Suppressio positis culpae propagationis in 4H-SiC PiN diodi utens protono implantatio ad degradationem bipolarem tollendam

Gratias tibi ago pro natura.com adire.Versio navigatoris utens quam subsidia limitata CSS habet.Ad optimam experientiam commendamus ut navigatro renovato uteris (vel inactivare Compatibilitas Modus in Penitus Rimor).In interim, ut continua firmamentum, nos reddere locum sine styles et JavaScript.
4H-sic fuerit commercialized ut materia ad potentia semiconductor cogitationes.Hoc Degradation causatur per unum Shockleking culpa (1SSF) propagationem basalis planum Delocations in 4h-sic crystallis.Hic nos proponimus modum pro suppresso 1SSF expansion per implantationem protons in 4h-sic epitaxial wafers.Pin Diodes fabricata in wafers cum Proton implantatio ostendit idem current, voltage characteres sicut Diodes sine Proton implantationem.In Contra, in 1SSF expansion efficaciter suppressa in protón-implantata ACUS diode.Hoc eventus confert ad progressionem altus reliable 4h-sic cogitationes.
4H-sic wafers cum diameter VI pollices sunt currently commercialized et propter molem productionem potentia semiconductor devices3.Traction systems ad electrica vehicles et impedimenta sunt fabricata per 4H-sic4.5 potentia semiconductor cogitationes.Hoc bipolar degradationem inventa super XX annos et iam diu fuit quaestio in sic fabrica fabrica.
Degradatio bipolaris causatur ab uno acervo Shockley (1SSF) in crystallis 4H-SiC cum dislocationibus planis basalibus (BPDs) propagatis per recombinationem aucta labefactationis labefactationis (REDG) 12,13,14,15,16,17,18,19.Igitur si BPD expansion est supprimitur ad 1SSF, 4h-sic potentia cogitationes potest fieri fictum sine bipolar degradation.Plures modi sunt relatum ad supprimere BPD propagationem, ut BPD ad filo ore peccetur (Marcus) transformatio 20,21,223,24.In lagana proximis SiC epitaxialis, BPD maxime adest in subiecto et non in strato epitaxiali ob conversionem BPD ad TED in initio incrementi epitaxialis.Ideo reliquae quaestio bipolar degradation est distributio BPD in subiecto 25,26,27.Insertio "compositi roborandi tabulatum" inter summa iacuit et substrata proposita est ut efficax methodus expansionis BPD suppressionis in substrato 28, 29, 30, 31. Haec tabula probabilitatem electronico-foraminis in recombinationem in recombinationem auget. epitaxial layer et sic substratum.Reducing numerum electronic-foramine pairs reducit ad driving vis REDG ad BPD in subiecto, ita composita supplemento iacuit potest supprimere bipolar degradation.Animadvertendum est quod immissio accumsan adiuncta gratuita in productione laganae secumfert, et sine iacuit immissione difficile est numerum electronico-foraminis minuere, modo moderante vitam ferebat.Ideo adhuc validum opus est ut aliae rationes suppressionis explicandae sint ad meliorem proportionem inter fabricam fabricandi sumptus et cede.
Quia extensio BPD ad 1SSF requirit motum dislocationum partialium (PDs), nudatum PD est accessus spondens ad degradationem bipolaris inhibendam.Etsi PD fibulationem a metallicis sordibus delata est, FPDs in 4H-SiC subiectae ad distantiam plus quam 5 µm a superficie iacuit epitaxialis sita sunt.Praeterea, cum diffusio coëfficientis cujusvis metalli in SIC valde parva sit, difficile est immunditiam metalli diffundere in substratum34.Debitum ad relative magna nuclei massa metallis, Ion implantatio metallorum est etiam difficile.E contra, in causa hydrogenii, elementum levissimum, iones (protons) in 4H-SiC inseri possunt ad altitudinem plus quam 10 µm utentes accelerator MeV-classis.Igitur si Proton implantatio implantatio PD Pinning, tunc potest esse ad supprimere BPD propagationem in subiecto.Tamen, Proton implantatio potest damnum 4h-sic et effectus in reducta fabrica perficietur Efferentiam 3.
Nos usus ACUS Diodes ut experimentalem fabrica structurae et fabricata eos in Proton-implantata 4h-sic epitaxial wafers.Tum observari Volt ampere characteres studere degradation of fabrica perficientur propter protón iniectio.Deinde, ut observari expansion 1SSF in Electrumininescence (El) imagines post applicando electrica voltage ad pin diode.Denique confirmavimus effectum proton iniectio in suppressionem 1SSF expansion.
In fig.Figura 1 notae hodiernae intentionis (CVCs) diodi diodi cella temperie in regionibus cum et sine protono implantatione ostendit priorum venae pulsantis.PiN diodes cum protón iniectione notas rectificationes similes diodis sine protónis injectione ostendunt, quamvis IV notae inter diodes communes sint.Ad indicandam differentiam inter injectiones conditiones, intentionem frequentiae cogitavimus in densitate currenti 2.5 A/cm2 (respondens 100 mA) ut statisticae insidiae ut in Figura 2. Proximae curvae per distributionem normalem repraesentatur. per punctatum linea.lineam.As can be seen from the peaks of the curves, the on-resistance slightly increases at proton doses of 1014 and 1016 cm-2, while the PiN diode with a proton dose of 1012 cm-2 shows almost the same characteristics as without proton implantation .Therefore, annealing at 1600 °C after implantation of Al ions is a necessary process to fabricate devices to activate the Al acceptor, which can repair the damage caused by proton implantation, which makes the CVCs the same between implanted and non-implanted proton PiN diodes .
Volt, ampere characteres de ACIENS et sine infusum protons ad locus temperatus.Legenda indicat dose protons.
Voltage frequency at Direct Current 2.5 A / CM2 quia ACIODES cum infusum et non-infusum protons.Dormi Distribution linea correspondet.
In fig.III ostendit an elementum a pin diode cum current density XXV a / cm2 post voltage.Antequam applicando pulsed vena onus, in tenebris regiones de diode non serventur, ut ostensum est in Figura 3. C2.Sed ut in fig.3a, in pin diode sine protón implantatio, complures tenebris alba regiones cum lux marginibus observata post applicando an electrica voltage.Tales virga informibus tenebris regiones sunt in el imaginibus 1ssf extendens a BPD in subiecto.Instead, quidam extenditur stacking culpae sunt in ACUS Diodes cum implantata protons, ut ostensum est in Fig. 3b-d.
EL images of PiN diodes at 25 A/cm2 after 2 hours of electrical stress (a) without proton implantation and with implanted doses of (b) 1012 cm-2, (c) 1014 cm-2 and (d) 1016 cm-2 protons.
Densitatem 1SSF dilatatam computavimus, areolis obscuris computatis cum marginibus lucidis in tribus diodis piN pro unaquaque conditione, ut in Figura 5. Densitas 1SSF expansi decrescat cum dosi protono crescentis, et etiam ad dose 1012 cm-2; Densitas expanded 1SSF est significantly minus quam in non-implantata pin diode.

Nobis observavimus carrier saecula in epitaxial layer LX μm densissima cum infusum protons of MXIV cm-II.Ex initial carrier vita, quamquam implantare reduces valorem ad ~ X%, subsequent annexa restituit eam ad ~ L%, ut exhibetur in Fig. S7.Ideo in carrier vitae, reducitur ex Proton implantatio, restituit a summus temperatus annales.Licet a L% reductionem in carrier vitae etiam suppreses propagationem stacking vitiis, in I-characteres, quae sunt typice dependens in carrier vitae, ostendunt solum minor differentias inter infusum et non-diosque differentias inter infusum et non-diosque differentias.Ideo credimus quod PD Anchoring ludit munus inhibentes 1SSF expansion.
Although SIMS did not detect hydrogen after annealing at 1600°C, as reported in previous studies, we observed the effect of proton implantation on the suppression of 1SSF expansion, as shown in Figures 1 and 4. 3, 4. Therefore, we believe that Et PD est anchored ab Hydrogenium atomis cum density sub deprehendatur terminus de sims (II × MXVI cm III), seu punctum defectus inducit implantationem.Notandum quod nos non confirmavit augmentum in on-re publica resistentia ex elongatione 1SSF postquam surge current onus.Hoc potest esse ex imperfecta ohmic contactus facta usura nostrum processus, quod erit eliminated in proximo futurum.
In fine, methodum extinctionem elaboravimus ad extendendam BPD ad 1SSF in 4H-SiC PiN diodes utentes protón implantationem ante fabricam fabricandi.Depravatio notae I-V in implantatione protonis parva est, praesertim in protono dosi 1012 cm-2, sed effectus 1SSF expansionis suppressionis notabilis est.Etsi in hoc studio 10 µm crassum PiN diodes cum protonia implantatione ad altitudinem 10 µm fabricavimus, potest tamen adhuc condiciones implantationis optimizare et eas ad alias rationes 4H-SiC machinis fabricare.Adiectis sumptibus fabricae fabricationis in protón implantatione considerari debent, sed similes erunt illis implantationis aluminium ion, quod est principale processus fabricandi pro 4H-SiC potentiae machinis.Ut, Proton implantatio prior ad fabrica processus est potentiale modum pro fabrici 4h-sic bipolar potentia cogitationes absque degeneratione.
Per Proton implantatio, in larva in laminam usus est, et laminam habuit sectiones sine et cum protón dose of MXII, MXIV, seu MXVI cm-II.Then, Al ions with proton doses of 1020 and 1017 cm–3 were implanted over the entire wafer to a depth of 0–0.2 µm and 0.2–0.5 µm from the surface, followed by annealing at 1600°C to form a carbon cap to forma ap iacuit.-Type.Postmodum, lateris posterioris NI contactus in latere subiecto posita erat, dum 2.0 mm × 2.0 mm Ti/al-vum figuratum lateris anterioris contactum a photolithographia formatum et processum cortices in latere epitaxiali positum est.Denique contactus annealing est peragitur ad temperatus de DCC ° c.Post cutting in laganum in eu, non feci accentus characterization et application.
Et ego V characteres de fabricato ACUS Diodes sunt observata usura an HP4155B Semiconductor parametri Analyser.Sicut in electrica accentus, a X-millisecond pulsed current de 212.5 a / cm2 est introducta pro II horas ad frequency of X pulsus / sec.Cum enim elegit in inferioribus current density et frequency, non observe 1SSF expansion etiam in pin diode sine protón iniectio.Per applicari electrica voltage, temperatus de pin diode est circa LXX ° C sine intentionalibus calefacit, ut ostensum est in figura S8.Electreoescentcent imagines sunt adeptus ante et post electrica accentus ad current densitate de XXV a / cm2.Synchrotron reflection grazing incidence X-ray topography using a monochromatic X-ray beam (λ = 0.15 nm) at the Aichi Synchrotron Radiation Center, the ag vector in BL8S2 is -1-128 or 11-28 (see ref. 44 for details) .).
In voltage frequency ad deinceps current densitate 2.5 a / cm2 extrahitur cum intervallo 0.5 V in Fig.II Secundum CVC cuiusque statu pin diode.Ex medio valore accentus Vave et vexillum declinationis σ accentus, machinamur curvam distributionem normalem in forma lineae punctatae in Figura 2 utendo sequentem aequationem;
Cicero, MR & Fahrner, RE review on materiae, microrsors, systems et cogitationes ad altus-temperatus et dura-environment applications. Cicero, MR & Fahrner, RE review on materiae, microrsors, systems et cogitationes ad altus-temperatus et dura-environment applications.Cicero, Mr et Farner, Wr Overview of Material, Microrsors, Systems et cogitationes pro applications in altum temperatus et dura ambitus. Cicero, Mr & Fahrner, WR 对 用 于 高温 恶劣 环境 应用 的 材料, 微传感器, 系统 和 设备 的 评论. Cicero, Mr & Fahrner, VVR recensionem de materiae, micrisensors, systems et cogitationes ad altum temperatus et adversa environmental applications.Cicero, Mr et Farner, wr Overview of materiae, microrsors, systems et cogitationes ad applications ad altum temperaturis et dura conditionibus.IEEE trans.Industrial Electronics.XLVIII, 249-257 (MMI).
Kimoto, C. & Cooper, Ja Tractatus De Silicon Carbide Technology Disputatio De Silicon Carbide Technology, incrementum, characterization, cogitationes et applications Vol. Kimoto, C. & Cooper, Ja Tractatus De Silicon Carbide Technology Disputatio De Silicon Carbide Technology, incrementum, characterization, cogitationes et applications Vol.Kimoto, T. et Cooper, Ja Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology, incrementum, characteres, cogitationes et applications Vol. Kimoto, C. & Cooper, JA 碳化硅 技术 基础 碳化硅 技术 基础: 增长, 表征, 设备 和 应用 卷. Kimoto, T. Cooper, J. Basics of Silicon Carbide Technology Basics of Silicon Carbide Technology: Augmentum, Characteres, Equipment and Applications Vol.252 (Wiley Singapore Pte Ltd, 2014).
Veliadis, V. Magna scale commercialization de SIC: Quid et obstacula ad vincere.alma mater.In scientia.Forum 1062, 125-130 (2022).
Broughton, J., Smet, V., Tummala, RR & Joshi, YK Recensio technologiae packaging technologiarum pro automotiva potestate electronicorum ad proposita tractus. Broughton, J., Smet, V., Tummala, RR & Joshi, YK Recensio technologiae packaging technologiarum pro automotiva potestate electronicorum ad proposita tractus.Broughton, J., Smet, V., Tummala, RR et Joshi, YK Conspectus technologiarum technologiarum fasciculorum ad automotivas potentias electronicas ad tractiones faciendas. Broughton, J., Smet, V., tumla, RR Joshi, k 用 于 牵引 目的 汽车 电力 电子 封装 技术 的 回顾 回顾 电子 热 热 封装 的 回顾 回顾 电子 电子 电子 热 热 电子 电子 电子 电子 电子 电子 电子 电子 热 热 热 的 汽车 电力 电子 热 封装 技术 的 回顾 电力 电子 热 封装 封装 技术 的. Broughton, J., Smet, V., Tummala, RR & Joshi, YKBroughton, J., Smet, V., Tummala, RR et Joshi, YK Conspectus technologiae technicae scelerisque pro automotiva potestate electronicarum ad proposita tractus.J. Electron.Package.Missa.ASME CXL, 1-11 (MMXVIII).
Sato, K., Kato, H. & Fukushima, T. Development of SIC applicari tractus ratio pro proximo-generation Shinkansen summus celeritas impedimenta. Sato, K., Kato, H. & Fukushima, T. Development of SIC applicari tractus ratio pro proximo-generation Shinkansen summus celeritas impedimenta.Sato K., Kato H. et Fukushima T. Development of an applicari Sic tractus ratio pro altera generation summus celeritas Shinkansen impedimenta.Appendix iej J. Ind. IX, 453-459 (MMXX).
Senzaki, J., Hayashi, S., Yonezawa, Y. et Okumura, H. Problems in implementation of altus reliable sic potentia cogitationes: incipiens a current statu et quaestionem de lagestre sic. Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. 实现 高 可靠性 sic 功率 器件 的 挑战 挑战 从 晶圆 现状 和 问题 来 看 看 现状 现状 问题 来 来 看 现状 现状 和 问题 来 从 问题 挑战 Senzaki, J., Hayashi, S., Yonezawa, Y. & Okumura, H. Provocatio assequendi altam firmitatem in artibus virtutis SiC: ex SiCSenzaki J, Hayashi S, Yonezawa Y. et Okumura H. Provocat in evolutione summi certaminis machinarum potentiarum quae carbide silicone nituntur: recognitionem status et problemata cum carbide lagana pii associata.In MMXVIII IEEE International Symposium in Reliability Physicorum (IRPS).(Senzaki, J. et al. Eds.) 3b.3-1-3b.3-6 (IEE, MMXVIII).
Kim, D. & Sung, W. Melius Short-circuitu Ruggedeness ad 1.2kv 4h-sic Mosfet per altum P-bene implemented per Channeling implantationem. Kim, D. & Sung, W. Melius Short-circuitu Ruggedeness ad 1.2kv 4h-sic Mosfet per altum P-bene implemented per Channeling implantationem.Kim, D. et cantu, V. Melius Short-Circuit immunitas ad 1.2 KV 4H-sic Mosfet per altum P-bene implemented per alveo implantationem. Kim, D. & cantu, W. 使用 通过 沟道 注入 实现 的 深 p 阱 提高 了 1.2kv 4h-sic Mosfet 的 短路 耐用 性. Kim, D. et cantu, V. Melius Short-Circuit Tolerantia de 1.2 KV 4H-sic Mosfets per altum P p-Wells per alveo implantationem.IEEE Electronic Fabricae Lect.XLII, 1822-1825 (MMXXI).
Skowronski M. et al.Recombination-amplificata motus defectus in deinceps-biased 4H-sic PN Diodes.J. Application.Physicis.XCII, 4699-4704 (MMII).
Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB Conversio Conversion in 4H Silicon carbide epitaxy. Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB Conversio Conversion in 4H Silicon carbide epitaxy.Ha S., Meszkowski P., SkowRonski M. et Rowland LB Munus transformatio durante 4h Silicon carbide epitaxy. Ha, S., Mieszkowski, P., Skowronski, M. & Rowland, LB 4H Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LB 4H Ha, S., Meszkowski, P., SkowRonski, M. & Rowland, LBDebitur transitus 4h in Silicon carbide epitaxy.J. Crystal.CCXLIV incrementum, 257-266 (MMII).
SkowRonski, M. & Ha, S. Degradation Hexagonal Silicon-Carbide-fundatur Bipolar cogitationes. SkowRonski, M. & Ha, S. Degradation Hexagonal Silicon-Carbide-fundatur Bipolar cogitationes.SkowRonski M. et Ha S. Degradation Hexagonal Bipolar devices Ex Silicon Carbide. SkowRonski, M. & Ha, S. 六 方 碳化硅基 双极 器件 的 降解. SkowRonski M. & Ha S.SkowRonski M. et Ha S. Degradation Hexagonal Bipolar devices Ex Silicon Carbide.J. Application.Physicis XCIX, (XI) CI (MMVI).
Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. et Ryu S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H. Agarwal, A., Fatima, H., Haney, S. & Ryu, S.-H.Agarwal A., Fatima H., Heini S. et Ryu S.-H.Novum degradation mechanism ad altus-voltage sic potentia Mosfets.IEEE electronic cogitationes litt.XXVIII, 587-589 (MMVII).
Caldwell, JD, Stahlbush, RE, Anconae, MG, Glembocki, OJ & Hobart, KD De vi impulsus ad recombinationem inducta positionem motus in 4H-SiC. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KD in driving vis ad recombination-adductus stacking culpa in 4h-sic.Caldwell, JD, Stalbush, RE, Anconae, MG, Glemboki, OJ, Hobart, KD De pulsis vi recombinationis inducta positis motu culpae in 4H-SiC. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KD 关于 4H-sic 中复合 引起 的 运动 的 驱动力 驱动力. Caldwell, JD, Stahlbush, Re, Anconae, MG, Glembocki, OJ & Hobart, KDCaldwell, JD, Stalbush, RE, Anconae, MG, Glemboki, OJ, Hobart, KD, De pulsis vi recombinationis inducta positis motu culpae in 4H-SiC.J. Application.Physicis.CVIII, (XLIV) DIII (MMX).
IIJima, A. & Kimoto, T. Electronic Energy Model enim Single Sockley Stacking Culpa formation in 4H-sic crystallis. IIJima, A. & Kimoto, T. Electronic Energy Model enim Single Sockley Stacking Culpa formation in 4H-sic crystallis.IIjima, A. et Kimoto, T. Electron-navitas exemplar formationis unius defectus shockley stipare in 4h-sic crystallis. J. Application.Physicis CXXVI, (CV) DCCIII (MMXIX).
IIjima, A. et Kimoto, T. aestimationem de discrimine rei publicae pro expansion / compressionem unius shockley stipare defectus in 4h-sic pin-Diodes. IIjima, A. et Kimoto, T. aestimationem de discrimine condiciones ad expansionem / compressionem unius defectus stipare shockley in 4h-sic pin-Diodes.Application Physicis Wright.
Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum bene actio exemplar ad formationem unius shockle stacking in a 4h-sic crystallum sub Non-aequilibrium conditionibus. Mannen, Y., Shimada, K., Asada, K. & Ohtani, N. Quantum bene actio exemplar ad formationem unius shockle stacking in a 4h-sic crystallum sub Non-aequilibrium conditionibus.Mannen Y., Shimada K., Asada K. et Otani N. Quantum bene exemplar ad formationem unum shockle stacking culpa in 4h-sic crystallum sub nonequibrium conditionibus.Mannen Y., Shimada K., Asada K. et Otani N. Quantum bene commercium exemplar ad formationem unius shockle stacking in 4h-sic crystallis sub nonequibrinus conditionibus.J. Application.Physicis.CXXV, (LXXXV) DCCV (MMXIX).
Galeckas, A., Linnrum, J. & Pirouz, P. quod pro Generalis mechanism of compositorum induction stacking layer: 六 方 sic.Physicorum Pastor Cicero.XCVI, (XXI) DII (MMVI).
Ishikawa, Y., Sudo, M., Yao, Y.-Z., Sugawara, Y. & Kato, M. Expansion de uno Shocklez Stacking culpa in 4h-sic (XI II €) epitaxial per electronic trabem irradiatio.Ishikawa, Y., M. Sudo, Y.-Z trabem irradiatio.Ishikawa, Y., Sudo M., Y.-z Psychology.Box, ю., М.
Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Observatio Portitorium Recomocations in 4H-sic. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. Observatio Portitorium Recomocations in 4H-sic.Kato M., Katahira S., itikawa Y., Harada S. et Kimoto T. observationis de carrier recombination in Single Shockle stipare defectus et partialium in 4h-sic. Kato, M., Katahira, S., Ichikawa, Y., Harada, S. & Kimoto, T. 单 shockle stacking stacking 和 去生 单 可以 位错 载 流子 去生 的 可以 位错 中 载 流子 去生 可以 位错 位错 位错 位错 中 位错 位错 位错 位错 位错 位错 位错 位错 位错Kato M., Katahira S., itikawa Y., Harada S. et Kimoto T. observationis de carrier recombination in Single Shockle stipare defectus et partialium in 4h-sic.J. Application.physicae 124, 095702 (2018).
Kimoto, T. & Watanabe, H. Defectus machinalis in technologia SiC pro summus intentionis potentiae machinas. Kimoto, T. & Watanabe, H. Defectus machinalis in technologia SiC pro summus intentionis potentiae machinas.Kimoto, T. et Watanabe, H. Progressus defectuum in technologia SiC pro alta intentione potentiarum machinarum. Kimoto, T. & Watanabe, H. SiC Kimoto, T. & Watanabe, H. Defectus machinalis in technologia SiC pro summus intentionis potentiae machinas.Kimoto, T. et Watanabe, H. Progressus defectuum in technologia SiC pro alta intentione potentiarum machinarum.applicatio physicae Express 13, 120101 (2020).
Zhang, Z. & Sudarshan, TS Basal planum dislocatione libero epitaxy carbidi pii. Zhang, Z. & Sudarshan, TS Basal planum dislocatione libero epitaxy carbidi pii.Zhang Z. et Sudarshan Ts peccetur-liberum epitaxy de Silicon carbide in basali planum. Zhang, Z. & Sudarshan, TS Zhang, Z. & Sudarshan, TSZhang Z. et Sudarshan TS Dislocatione libero epitaxia de planis basalibus carbide pii.dicitur.Physicis.Wright.LXXXVII, (CLI) CMXIII (MMV).
Zhang, Z., Moulton, E. & Sudarshan, TS Mechanismus eliminandi dislocationes plani basalis in tenuibus pelliculis SiC epitaxy in substrata notata. Zhang, Z., Moulton, E. & Sudarshan, TS Mechanismus eliminandi dislocationes plani basalis in tenuibus pelliculis SiC epitaxy in substrata notata.Zhang Z., Moulton E. et Sudarshan TS Mechanismus eliminationis basi plani dislocationes in membrana SiC tenuissima epitaxia in subiecto signato. Zhang, Z., Moulton, E. & Sudarshan, TS SiC Zhang, Z., Moulton, E. Sudarshan, TS mechanism of eliminanda sic tenues film per etching subiectum.Zhang Z., Moulton E. et Sudarshan TS Mechanismus eliminationis basi plani dislocationes in membrana SiC tenui epitaxia in subiecta subiecta.applicatio physicae Wright.LXXXIX, (LXXXI) CMX (MMVI).
Shtalbush Re et al.Ad incrementum intermittit ducit ad decrementum in basali planum Delocations durante 4h-sic epitaxy.dicitur.Physicis.Wright.XCIV, (XLIV) CMXVI (MMIX).
Zhang X. & Tsuchida, H. 通过 高温 退火 将 4H-sic 外延层 中 的 基面 位错 为 螺纹 刃 位错. Zhang, X. & Tsuchida, H. 通过 高温 退火 将 4H-sic
Canticum, H. Sudarshan, TS Basal Plane Delocationem conversionem circa epilayer / subiectum interface epitaxial incrementum IV ° off-axis 4h-sic. Canticum, H. Sudarshan, TS Basal Plane Delocationem conversionem circa epilayer / subiectum interface epitaxial incrementum IV ° off-axis 4h-sic. Canticum, H. Sudarshan, TS 在 IV ° 离轴 4H-sic 外延 生长 中外 延层 / 衬底界面 的 基底 平面 位错转换. Song, H. & Sudarshan, TS 4° 4H-SiC Canticum, H. Sudarshan, TJ. Crystal.Augmentum 371, 94–101 (2013).
Konishi, K. et al.In alta current, propagatio de basali planum peccetur stacking culpa in 4h-sic epitaxial layers transforms in filamento obstupations.J. Application.Physicis.CXIV, (XIV) DIV (MMXIII).
Konishi, K. et al.Design epitaxiales stratis bipolaris non-degradandis SiC MOSFETs detectis extensis positis culpae nucleationis locis in operationalibus X-radii topographicis analysi.Aip Advanced XII, (XXXV) CCCX (MMXII).
Lin, S. et al.Influentia in structuram dislocationis plani basalis in propagatione unius generis Shockley culpae positis in praecedente corruptione currentis 4H-SiC clavorum diodi.Iaponia.J. Application.Physicis.LVII, 04fr07 (MMXVIII).
Tahara, T. et al.In brevi minoritate carrier vita in NITROGENIUM-dives 4h-sic epilayers adhibetur ad supprimere stacking vitiis in pin Diodes.J. Application.Physicis.CXX, (CXV) CI (MMXVI).
Tahara, T. et al.Infunda carrier concentration dependentia unius shockleking culpa propagationem in 4h-sic pax diosdi.J. Application.Physicis CXXIII, (XXIV) DCCVII (MMXVIII).
Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA ratio pro profundum, resolvitur carrier vitae measurement in sic. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. Microscopic FCA ratio pro profundum, resolvitur carrier vitae measurement in sic.Mei, S., Tawara, T., Tsuchida, H. et Kato, M. FCA microscopic ratio pro profundum, resolvi carrier vita mensura in Silicon carbide. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. 用 于 sic 中 分辨载 流子 寿命 测量 显微 显微 系统 系统. Mae, S., Tawara, T., Tsuchida, H. & Kato, M. pro Sic medium-profundum 分辨载 流子 vita mensurae 的 月微 FCA ratio.alma mater scientia Forum 924, 269-272 (2018).
Hirayama, T. et al.Altitudo ferebat distributio vivorum in stratis epitaxialibus crassis 4H-SiC mensuratus non-destructive utens tempore resolutionis liberae tabellionis effusio et in lucem transiit.Switch ad scientia.metrum.XCI, (CXXIII) CMII (MMXX).


Post tempus: Nov-06-2022